Cycloheximide and lipopolysaccharide downregulate αENaC mRNA via different mechanisms in alveolar epithelial cells.
نویسندگان
چکیده
Active Na(+) transport mediated by epithelial Na(+) channel (ENaC) is vital for fetal lung fluid reabsorption at birth and pulmonary edema resolution. Previously, we demonstrated that αENaC expression and activity are downregulated in alveolar epithelial cells by cycloheximide (Chx) and Pseudomonas aeruginosa. The regulatory mechanisms of αENaC mRNA expression by Chx and lipopolysaccharide (LPS) from P. aeruginosa were further studied in the present work. Both agents decreased αENaC mRNA expression to 50% of control values after 4 h. Chx repressed αENaC expression in a dose-dependent manner independently of protein synthesis. Although extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) pathways were activated by the two treatments, their mechanisms of ENaC mRNA modulation were different. First, activation of the signaling pathways was sustained by Chx but only transiently by LPS. Second, ERK1/2 or p38 MAPK inhibition attenuated the effects of Chx on αENaC mRNA, whereas suppression of both signaling pathways was necessary to alleviate the outcome of LPS on αENaC mRNA. The molecular mechanisms involved in the decrease of αENaC expression were investigated in both conditions. LPS, but not Chx, significantly reduced αENaC promoter activity via the ERK1/2 and p38 MAPK pathways. These results suggest that LPS attenuates αENaC mRNA expression via diminution of transcription, whereas Chx could trigger some posttranscriptional mechanisms. Although LPS and Chx downregulate αENaC mRNA expression similarly and with similar signaling pathways, the mechanisms modulating ENaC expression are different depending on the nature of the cellular stress.
منابع مشابه
SOCS-1 rescues IL-1β-mediated suppression of epithelial sodium channel in mouse lung epithelial cells via ASK-1
BACKGROUND Acute lung injury (ALI) is characterized by alveolar damage, increased levels of pro-inflammatory cytokines and impaired alveolar fluid clearance. Recently, we showed that the deletion of Apoptosis signal-regulating kinase 1 (ASK1) protects against hyperoxia-induced acute lung injury (HALI) by suppressing IL-1β and TNF-α. Previously, our data revealed that the suppressor of cytokine ...
متن کاملModulation of cellular transport characteristics of the human lung alveolar epithelia
Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...
متن کاملModulation of cellular transport characteristics of the human lung alveolar epithelia
Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...
متن کاملHuman alveolar epithelial type II cells in primary culture
Alveolar epithelial type II (AEII) cells are a key structure and defender in the lung but also are the targets in many lung diseases, including acute respiratory distress syndrome, ventilator-induced lung injury, and pulmonary fibrosis. We sought to establish an optimized method for high yielding and long maintenance of characteristics of primary human AEII cells to facilitate the investigation...
متن کاملInduction of nitric oxide synthase expression by lipopolysaccharide is mediated by calcium-dependent PKCα-β1 in alveolar epithelial cells.
Nitric oxide (NO) plays an important role in innate host defense and inflammation. In response to infection, NO is generated by inducible nitric oxide synthase (iNOS), a gene product whose expression is highly modulated by different stimuli, including lipopolysaccharide (LPS) from gram-negative bacteria. We reported recently that LPS from Pseudomonas aeruginosa altered Na⁺ transport in alveolar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 305 10 شماره
صفحات -
تاریخ انتشار 2013